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Administration

● Exercise 2 is posted.
● Due one week from today.

● The first assignment will be posted by Monday.
● Will be due Tuesday after the midterm.
● Should be started before the midterm.

● Help Centre is still open.
● BA 2270.



String Review

● Strings are a new type we use to represent text.
● Denoted by ' or “ or '''.
● Can use escape characters to put in special 

characters into strings.
● Other types can be inserted into a string using 

string formatting.
● len, ord and char are useful functions.
● .strip, .replace, .lower, .upper, 
.count are useful methods.



Modules Review

● A module is a single file that contains python 
code.
● This code can be used in a program that's in the 

same directory by using import or from 
module_name import *

● All of the code in a module is executed the first time 
it is imported.

● To access imported functions one used 
module_name.function_name()

● Each module has a __name__.
● This is either the filename if the module has been 

imported or '__main__' if the file is being run.



Lists

● So far, every name we've seen has referred to a 
single object.
● Variables names refer to a single int/bool/str/etc.
● Function names refer to a single function.

● This is not always convenient.
● Think of keep records for a club.
● It might be useful to have one way to easily store 

the names of all the members.

● Can use a list.



June 7 2012

Lists

● Lists are assigned with:

list_name = [list_elt0, 
list_elt1, ..., list_eltn]

● To retrieve a list element indexed by i one 
does :

list_name[i]

● So the following are equivalent:

eg_list = [15]         foo(15)

foo(eg_list[0])
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Lists

● Lists are assigned with:

list_name = [list_elt0, 
list_elt1, ..., list_eltn]

● To retrieve a list element indexed by i one 
does :

list_name[i]

● So the following are equivalent:

eg_list = [15]         foo(15)

foo(eg_list[0])



June 7 2012

Lists

● Empty lists are allowed: [].

● list_name[-i] returns the ith element from 
the back.
● Note the difference between l[0] and l[-1].

● Lists are heterogeneous:
● That is, the elements in a list need not be the same 

type, can have ints and strings.
● Can even have lists themselves.



June 7 2012

Lists

● To get to the i-th element of a list we use:

list_name[i-1]

● We use i-1 because lists are indexed from 0.
● This means to refer to the elements of a 4 

element list named list_name we use 
list_name[0], list_name[1], 
list_name[2], list_name[3]



June 7 2012

Lists and the memory model.

eg_list = [0,1,True]

eg_list: 0x1 
Global ?
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Lists and the memory model.

eg_list = [0,1,True]

eg_list: 0x1 
Global

int

0x10
1

int

0x5
0

bool

0x8
True

?
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Lists and the memory model.

eg_list = [0,1,True]

eg_list: 0x1 
Global

list

0x1
0x10 0x80x5

int

0x10
1

int

0x5
0

bool

0x8
True



June 7 2012

Changing a List

● A list is like a whole bunch of variables.
● We've seen we can change the value of variables 

with assignment statements.
● We can change the value of list elements with 

assignment statements as well.

● We just put the element on the left and the 
expression on the right:

list_name[i] = expression

● This assigned the value of the expression to 
list_name[i].



June 7 2012

Immutable objects

● Ints, floats, strings and booleans don't change.

● If we need to change the value of a variable 
that refers to one of these types, we need to 
create a new instance of the type in memory.

● That is, instead of making an old int into a new 
one, we make a new int, and throw the old one 
away.



June 7 2012

Mutability

● If we only want to change one element of a list, 
then it seems a waste to have to create all of 
the types that it points to again, even though 
only one of them has changed.

● So this isn't done. Instead we can change the 
individual elements of a list.

● Note that since we view these as memory 
locations, this means that we change the 
location in memory that the list points to.
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Lists and the memory model.

eg_list = [0,1,True]

eg_list[0] = 10

eg_list: 0x1 
Global

list

0x1
0x10 0x80x5

int

0x10
1

int

0x5
0

bool

0x8
True
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Global
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Lists and the memory model.

eg_list = [0,1,True]

eg_list[0] = 10

eg_list: 0x1 
Global
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0x10 0x80x5

int

0x10
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Lists and the memory model.

eg_list = [0,1,True]

eg_list[0] = 10

eg_list: 0x1 
Global

list

0x1
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int
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0
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Lists and the memory model.

eg_list = [0,1,True]

eg_list[0] = 10

eg_list: 0x1 
Global

list

0x1
0x10 0x80x20

int

0x10
1

int

0x5
0

bool

0x8
True

int

0x20
10

int

0x5
0
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Aliasing

● Consider:
x=10

y=x

x=5

print x, y

● We know this will print 5 10 to the screen, 
because ints are immutable.
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Aliasing

● Let eg_list be an already initialised list and 
consider:

x = eg_list

y = x

x[0] = 15

print y[0]

● Lists are mutable, so this will print 15.



June 7 2012

Aliasing and functions.

● When one calls a function, one is effectively 
beginning with a bunch of assignment 
statements.
● That is, the parameters are assigned to the local 

variables.

● But with mutable objects, these assignment 
statements mean that the local variable refers 
to a mutable object that it can change.

● This is why functions can change mutable 
objects, but not immutable ones.



June 7 2012

Break, the first.



June 2 2011

Repetition

● Often times in programs we want to do the 
same thing over and over again.

● For example, we may want to add every 
element of a list to some string.

● Or we may want to execute a block of code until 
some condition is true.

● Or we may want to change every element of a 
list.



June 2 2011

Loops

● Python has two types of loops.
● The for loop.

● This is a bit simpler.
● This requires an object to loop over.
● Some code is executed once for every element in 

the object.

● The while loop.
● Some code is executed so long as a certain 

condition is true.



June 7 2012

For Loops with Lists

● syntax:
for item in eg_list:

    block

● This is equivalent to:
item = eg_list[0]

block

item = eg_list[1]

block

...



June 7 2012

For Loops with Strings

● eg_str[i] evaulates to the i-1st character of 
eg_str.

● syntax:
for item in eg_str:

    block

● This is equivalent to:
item = eg_str[0]

block

item = eg_str[1]

block

...



June 7 2012

A useful Loop Template

● Often times we get something from every 
element of a list and use this to create a single 
value.

● Like the number of times some condition is true.
● Or the average of the elements of the list.



June 7 2012

A useful Loop Template

● In this case we often use an 
accumulator_variable that accrues information 
each time the loop happens.

● This often looks like

accum_var = 0 #maybe [] or ''.

for elt in list_name:

    block #This will modify 
accum_var

#accum_var should hold the right 
#value here.
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A useful Loop Template

● The average of the number of elements in the 
list. (len(list_name) is length of a list)

accum_var = 0 #maybe [] or ''.

for elt in list_name:

    block #This will modify 
accum_var

#accum_var should hold the right 
#value here.
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A useful Loop Template

● The average of the number of elements in the 
list.(len(list_name) is length of a list)

accum_var = 0

for elt in list_name:

    block #This will modify 
accum_var

#accum_var should hold the right 
#value here.
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A useful Loop Template

● The average of the number of elements in the 
list.(len(list_name) is length of a list)

accum_var = 0

for elt in list_name:

    accum_var += elt

#accum_var should hold the right 
#value here.



June 7 2012

A useful Loop Template

● The average of the number of elements in the 
list.(len(list_name) is length of a list)

accum_var = 0

for elt in list_name:

    accum_var += elt

accum_var = accum_var/len(list_name)



June 7 2012

For Loops with Lists

item = eg_list[0]

block

item = eg_list[1]

block

...

● Note that even if the block changes the value of 
item the value of eg_list[i] may not 
change.
● Depends on whether eg_list[i] is 

mutable.
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For Loops with Lists

● To guarantee our ability to change eg_list[i] we 
need the block to have eg_list[item] instead of 
item, and item to contain the indices.

item = 0

block

item = 1

block

...



June 7 2012

Looping over Lists

● To do that, we use the range() function.
● range(i) returns an ordered list of ints ranging 

from 0 to i-1.
● range(i,j) returns an ordered list of ints ranging 

from i to j-1 inclusive.
● range(i,j,k) returns a list of ints ranging from i 

to j-1 with a step of at least k between ints.

● So range(i,k)==range(i,k,1)
● To modify a list element by element we use:

for i in range(len(eg_list)):
block



June 7 2012

Break, the second.



June 7 2012

Lists: Functions

● Lists come with lots of useful functions and 
methods.

● len(list_name), as with strings, returns the 
length of the list.

● min(list_name) and max(list_name) 
return the min and max so long as this is well 
defined.

● sum(list_name) returns the sum of elements 
so long as they're numbered.
● Not defined for lists of strings.



June 7 2012

Lists: Methods

● sort() - sorts the list in-place so long as this 
is well defined. (need consistent notions of > 
and ==)

● insert(index, value) – inserts the 
element value at the index specified.

● remove(value) – removes the first instance 
of value.

● count(value) – counts the number of 
instances of value in the list.



June 7 2012

List Methods

● append(value) – adds the value to the end of 
the list.

● extend(eg_list) - glues eg_list onto the 
end of the list.

● pop() - returns the last value of the list and 
removes it from the list.

● pop(i) - returns the value of the list in position 
i and removes it from the list.



June 7 2012

Pitfalls

● Note that insert, remove, append, extend, and 
pop all change the length of a list.

● These methods can be called in the body of a 
for loop over the list that is being looped over.

● This can lead to all sorts of problems.
● Infinite loops.
● Skipped elements.
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Pitfalls

● Note that append, extend, and pop all change 
the length of a list.

● These methods can be called in the body of a 
for loop over the list that is being looped over.

● This can lead to all sorts of problems.
● Infinite loops.
● Skipped elements.

● Don't Do This.
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Copying a List

● We saw that as lists are mutable, we can't copy 
them by assigning another variable to them.

● Lists are copied in python by using [:]

● so the following will cause x to refer to a copy 
of eg_list

x = eg_list[:]

● Now we can modify x without modifying eg_list.
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List slicing.

● Sometimes we want to perform operations on a 
sublist.

● To refer to a sublist we use list slicing.
● y=x[i:j] gives us a list y with the elements 

from i to j-1 inclusive.
● x[:] makes a list that contains all the elements of the original.

● x[i:] makes a list that contains the elements from i to the end.

● x[:j] makes a list that contains the elements from the beginning 
to j-1.

● y is a new list, so that it is not aliased with x.
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Strings revisted.

● Strings can be considered tuples of individual 
characters. (since they are immutable).

● In particular, this means that we can use the list 
knowlege that we gained, an apply it to strings.
● Can reference individual characters by string[+/-i].
● Strings are not heterogenous, they can only contain 

characters.
● min() and max() defined on strings, but sum() is not.
● You can slice strings just as you can lists.
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String methods revisted.

● Now that we know that we can index into 
strings, we can look at some more string 
methods.
● find(substring): give  the index of the first 

character in a matching the substring from the left 
or -1 if no such character exists. 

● rfind(substring): same as above, but from the 
right.

● find(substring,i,j): same as find(), but looks 
only in string[i:j].
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Nested Lists

● Because lists are heterogeneous, we can have 
lists of lists.

● This is useful if we want matrices, or to 
represent a grid or higher dimenstional space.

● We then reference elements by list_name[i][j] if 
we want the jth element of the ith list.

● So then naturally, if we wish to loop over all the 
elements we need nested loops:

for item in list_name:

    for item2 in item:

        block



June 7 2012

Lab Review 

● Next weeks lab covers strings.
● You'll need to be comfortable with:

● string methods.
● writing for loops over strings.
● string indexing.
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