
CSC 108H: Introduction to Computer
Programming

Summer 2012

Marek Janicki

Administration

● Exercise 2 is posted.
● Due one week from today.

● The first assignment will be posted by Monday.
● Will be due Tuesday after the midterm.
● Should be started before the midterm.

● Help Centre is still open.
● BA 2270.

String Review

● Strings are a new type we use to represent text.
● Denoted by ' or “ or '''.
● Can use escape characters to put in special

characters into strings.
● Other types can be inserted into a string using

string formatting.
● len, ord and char are useful functions.
● .strip, .replace, .lower, .upper,
.count are useful methods.

Modules Review

● A module is a single file that contains python
code.
● This code can be used in a program that's in the

same directory by using import or from
module_name import *

● All of the code in a module is executed the first time
it is imported.

● To access imported functions one used
module_name.function_name()

● Each module has a __name__.
● This is either the filename if the module has been

imported or '__main__' if the file is being run.

Lists

● So far, every name we've seen has referred to a
single object.
● Variables names refer to a single int/bool/str/etc.
● Function names refer to a single function.

● This is not always convenient.
● Think of keep records for a club.
● It might be useful to have one way to easily store

the names of all the members.

● Can use a list.

June 7 2012

Lists

● Lists are assigned with:

list_name = [list_elt0,
list_elt1, ..., list_eltn]

● To retrieve a list element indexed by i one
does :

list_name[i]

● So the following are equivalent:

eg_list = [15] foo(15)

foo(eg_list[0])

June 7 2012

Lists

● Lists are assigned with:

list_name = [list_elt0,
list_elt1, ..., list_eltn]

● To retrieve a list element indexed by i one
does :

list_name[i]

● So the following are equivalent:

eg_list = [15] foo(15)

foo(eg_list[0])

June 7 2012

Lists

● Empty lists are allowed: [].

● list_name[-i] returns the ith element from
the back.
● Note the difference between l[0] and l[-1].

● Lists are heterogeneous:
● That is, the elements in a list need not be the same

type, can have ints and strings.
● Can even have lists themselves.

June 7 2012

Lists

● To get to the i-th element of a list we use:

list_name[i-1]

● We use i-1 because lists are indexed from 0.
● This means to refer to the elements of a 4

element list named list_name we use
list_name[0], list_name[1],
list_name[2], list_name[3]

June 7 2012

Lists and the memory model.

eg_list = [0,1,True]

eg_list: 0x1
Global ?

June 7 2012

Lists and the memory model.

eg_list = [0,1,True]

eg_list: 0x1
Global

int

0x10
1

int

0x5
0

bool

0x8
True

?

June 7 2012

Lists and the memory model.

eg_list = [0,1,True]

eg_list: 0x1
Global

list

0x1
0x10 0x80x5

int

0x10
1

int

0x5
0

bool

0x8
True

June 7 2012

Changing a List

● A list is like a whole bunch of variables.
● We've seen we can change the value of variables

with assignment statements.
● We can change the value of list elements with

assignment statements as well.

● We just put the element on the left and the
expression on the right:

list_name[i] = expression

● This assigned the value of the expression to
list_name[i].

June 7 2012

Immutable objects

● Ints, floats, strings and booleans don't change.

● If we need to change the value of a variable
that refers to one of these types, we need to
create a new instance of the type in memory.

● That is, instead of making an old int into a new
one, we make a new int, and throw the old one
away.

June 7 2012

Mutability

● If we only want to change one element of a list,
then it seems a waste to have to create all of
the types that it points to again, even though
only one of them has changed.

● So this isn't done. Instead we can change the
individual elements of a list.

● Note that since we view these as memory
locations, this means that we change the
location in memory that the list points to.

June 7 2012

Lists and the memory model.

eg_list = [0,1,True]

eg_list[0] = 10

eg_list: 0x1
Global

list

0x1
0x10 0x80x5

int

0x10
1

int

0x5
0

bool

0x8
True

June 7 2012

Lists and the memory model.

eg_list = [0,1,True]

eg_list[0] = 10

eg_list: 0x1
Global

list

0x1
0x10 0x80x5

int

0x10
1

int

0x5
0

bool

0x8
True

June 7 2012

Lists and the memory model.

eg_list = [0,1,True]

eg_list[0] = 10

eg_list: 0x1
Global

list

0x1
0x10 0x80x5

int

0x10
1

int

0x5
0

bool

0x8
True

int

0x20
10

int

0x5
0

June 7 2012

Lists and the memory model.

eg_list = [0,1,True]

eg_list[0] = 10

eg_list: 0x1
Global

list

0x1
0x10 0x80x20

int

0x10
1

int

0x5
0

bool

0x8
True

int

0x20
10

int

0x5
0

June 7 2012

Lists and the memory model.

eg_list = [0,1,True]

eg_list[0] = 10

eg_list: 0x1
Global

list

0x1
0x10 0x80x20

int

0x10
1

int

0x5
0

bool

0x8
True

int

0x20
10

int

0x5
0

June 7 2012

Aliasing

● Consider:
x=10

y=x

x=5

print x, y

● We know this will print 5 10 to the screen,
because ints are immutable.

June 7 2012

Aliasing

● Let eg_list be an already initialised list and
consider:

x = eg_list

y = x

x[0] = 15

print y[0]

● Lists are mutable, so this will print 15.

June 7 2012

Aliasing and functions.

● When one calls a function, one is effectively
beginning with a bunch of assignment
statements.
● That is, the parameters are assigned to the local

variables.

● But with mutable objects, these assignment
statements mean that the local variable refers
to a mutable object that it can change.

● This is why functions can change mutable
objects, but not immutable ones.

June 7 2012

Break, the first.

June 2 2011

Repetition

● Often times in programs we want to do the
same thing over and over again.

● For example, we may want to add every
element of a list to some string.

● Or we may want to execute a block of code until
some condition is true.

● Or we may want to change every element of a
list.

June 2 2011

Loops

● Python has two types of loops.
● The for loop.

● This is a bit simpler.
● This requires an object to loop over.
● Some code is executed once for every element in

the object.

● The while loop.
● Some code is executed so long as a certain

condition is true.

June 7 2012

For Loops with Lists

● syntax:
for item in eg_list:

 block

● This is equivalent to:
item = eg_list[0]

block

item = eg_list[1]

block

...

June 7 2012

For Loops with Strings

● eg_str[i] evaulates to the i-1st character of
eg_str.

● syntax:
for item in eg_str:

 block

● This is equivalent to:
item = eg_str[0]

block

item = eg_str[1]

block

...

June 7 2012

A useful Loop Template

● Often times we get something from every
element of a list and use this to create a single
value.

● Like the number of times some condition is true.
● Or the average of the elements of the list.

June 7 2012

A useful Loop Template

● In this case we often use an
accumulator_variable that accrues information
each time the loop happens.

● This often looks like

accum_var = 0 #maybe [] or ''.

for elt in list_name:

 block #This will modify
accum_var

#accum_var should hold the right
#value here.

June 7 2012

A useful Loop Template

● The average of the number of elements in the
list. (len(list_name) is length of a list)

accum_var = 0 #maybe [] or ''.

for elt in list_name:

 block #This will modify
accum_var

#accum_var should hold the right
#value here.

June 7 2012

A useful Loop Template

● The average of the number of elements in the
list.(len(list_name) is length of a list)

accum_var = 0

for elt in list_name:

 block #This will modify
accum_var

#accum_var should hold the right
#value here.

June 7 2012

A useful Loop Template

● The average of the number of elements in the
list.(len(list_name) is length of a list)

accum_var = 0

for elt in list_name:

 accum_var += elt

#accum_var should hold the right
#value here.

June 7 2012

A useful Loop Template

● The average of the number of elements in the
list.(len(list_name) is length of a list)

accum_var = 0

for elt in list_name:

 accum_var += elt

accum_var = accum_var/len(list_name)

June 7 2012

For Loops with Lists

item = eg_list[0]

block

item = eg_list[1]

block

...

● Note that even if the block changes the value of
item the value of eg_list[i] may not
change.
● Depends on whether eg_list[i] is

mutable.

June 7 2012

For Loops with Lists

● To guarantee our ability to change eg_list[i] we
need the block to have eg_list[item] instead of
item, and item to contain the indices.

item = 0

block

item = 1

block

...

June 7 2012

Looping over Lists

● To do that, we use the range() function.
● range(i) returns an ordered list of ints ranging

from 0 to i-1.
● range(i,j) returns an ordered list of ints ranging

from i to j-1 inclusive.
● range(i,j,k) returns a list of ints ranging from i

to j-1 with a step of at least k between ints.

● So range(i,k)==range(i,k,1)
● To modify a list element by element we use:

for i in range(len(eg_list)):
block

June 7 2012

Break, the second.

June 7 2012

Lists: Functions

● Lists come with lots of useful functions and
methods.

● len(list_name), as with strings, returns the
length of the list.

● min(list_name) and max(list_name)
return the min and max so long as this is well
defined.

● sum(list_name) returns the sum of elements
so long as they're numbered.
● Not defined for lists of strings.

June 7 2012

Lists: Methods

● sort() - sorts the list in-place so long as this
is well defined. (need consistent notions of >
and ==)

● insert(index, value) – inserts the
element value at the index specified.

● remove(value) – removes the first instance
of value.

● count(value) – counts the number of
instances of value in the list.

June 7 2012

List Methods

● append(value) – adds the value to the end of
the list.

● extend(eg_list) - glues eg_list onto the
end of the list.

● pop() - returns the last value of the list and
removes it from the list.

● pop(i) - returns the value of the list in position
i and removes it from the list.

June 7 2012

Pitfalls

● Note that insert, remove, append, extend, and
pop all change the length of a list.

● These methods can be called in the body of a
for loop over the list that is being looped over.

● This can lead to all sorts of problems.
● Infinite loops.
● Skipped elements.

June 7 2012

Pitfalls

● Note that append, extend, and pop all change
the length of a list.

● These methods can be called in the body of a
for loop over the list that is being looped over.

● This can lead to all sorts of problems.
● Infinite loops.
● Skipped elements.

● Don't Do This.

June 7 2012

Copying a List

● We saw that as lists are mutable, we can't copy
them by assigning another variable to them.

● Lists are copied in python by using [:]

● so the following will cause x to refer to a copy
of eg_list

x = eg_list[:]

● Now we can modify x without modifying eg_list.

June 7 2012

List slicing.

● Sometimes we want to perform operations on a
sublist.

● To refer to a sublist we use list slicing.
● y=x[i:j] gives us a list y with the elements

from i to j-1 inclusive.
● x[:] makes a list that contains all the elements of the original.

● x[i:] makes a list that contains the elements from i to the end.

● x[:j] makes a list that contains the elements from the beginning
to j-1.

● y is a new list, so that it is not aliased with x.

June 7 2012

Strings revisted.

● Strings can be considered tuples of individual
characters. (since they are immutable).

● In particular, this means that we can use the list
knowlege that we gained, an apply it to strings.
● Can reference individual characters by string[+/-i].
● Strings are not heterogenous, they can only contain

characters.
● min() and max() defined on strings, but sum() is not.
● You can slice strings just as you can lists.

June 7 2012

String methods revisted.

● Now that we know that we can index into
strings, we can look at some more string
methods.
● find(substring): give the index of the first

character in a matching the substring from the left
or -1 if no such character exists.

● rfind(substring): same as above, but from the
right.

● find(substring,i,j): same as find(), but looks
only in string[i:j].

June 7 2012

Nested Lists

● Because lists are heterogeneous, we can have
lists of lists.

● This is useful if we want matrices, or to
represent a grid or higher dimenstional space.

● We then reference elements by list_name[i][j] if
we want the jth element of the ith list.

● So then naturally, if we wish to loop over all the
elements we need nested loops:

for item in list_name:

 for item2 in item:

 block

June 7 2012

Lab Review

● Next weeks lab covers strings.
● You'll need to be comfortable with:

● string methods.
● writing for loops over strings.
● string indexing.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

